ON THE ADMISSIBILITY OF REPLACING THE HEAT
CONDUCTION EQUATION OF A PIPE WALL BY THE
HEAT BALANCE EQUATION IN INVESTIGATING
TRANSIENTS IN HEAT EXCHANGERS

V. V. Krasheninnikov UDC 536.21:66.045.1

An expression is obtained to determine the fraction of the thermal resistance of a pipe
wall which must be referred to the inner boundary when using the heat balance equation
for the wall instead of the heat conduction equation (for a heat exchanger with independent
heating), Limits of applicability of the model with temperature concentrated along the
pipe radius are given,

Widely used in the analysis of transients in heat exchangers is the simplification that the heat
conduction equation of the pipe wall can be replaced by the heat balance equation. To take account of the
heat conduction of the metal, a certain fraction of the wall thermal resistance is referred to the inner (or
outer) boundary, i.e., heat-exchange coefficients with a correction for the resistance of the metal heat
conduction are introduced [1]. Up to now, individual computations of particular cases by exact and ap-
proximate methods are known on whose basis it is impossible to make general deductions.

The possibility of using a simplified model to determine the frequency characteristics of a tubular
heat exchanger with independent heating (internal heat liberation in the wall or heating from outside by radia-
tion, say) for a heat carrier with changing properties (near-critical state, boiling fluid) is anatyzed herein
by comparing models with the pipe wall temperature distributed and concentrated along the radius.

Let us first examine the model with wall temperature distributed along the radius. The processes oc-
curring in a tubular heat exchanger under the standard assumptions can be described by a system of equa-
tions including the energy, stream continuity and motion equations (in a one-dimensional approximation),
and the wall heat conduction equation:
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(both cases will be examined simultaneously later).

Let us investigate the process for small sinusoidal perturbations of the enthalpy, discharge, and
pressure of the medium at the inlet, and also for perturbations by the heat flux, i.e., let us assume that
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Because of these perturbations changes in the parameters along the heat exchanger will occur. In
a linear approximation we can assume
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Deviations in the temperature of the medium and the specific volume are determined by the ex-
pressions
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Considering the changes in the parameters to occur relatively slowly, we can assume that the coef-
ficient of hydraulic resistance does not vary in a nonstationary process, and the coefficient of heat ex-
change varies according to stationary regularities. Taking account of the dependence of o, onthe enthalpy,
discharge, and heat flux (in the boiling case), we will have
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where the coefficients are
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Let us substitute (9)-(11) into (1)-(7). Let us eliminate the statics equation and, for convenience, let
us replace the length coordinate I by the enthalpy I, in the static mode [dl = (d,G¢/4Qy)dLy]. Using the
notation pgp = [1 -(chzo/agon(aaz/ax), Tp = dy/ £EGgvy, ¢ =dy/dy, we obtaina system of equations for the
deviations:
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Th‘e boundary conditions will be:
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Solving [15] taking account of the boundary conditions (16) and (17) or (16) and (18) forQipn, = 0), re-
spectively [2], we find for the wall temperature deviation on the inner boundary of the pipe:
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Therefore, in the general case transients are described by the system (22), (13), and (14) with the
boundary conditions (19) for small perturbations in heat exchangers with uniform heating along the length
(internal heat sources or heating from outside). This system can be used to compute the dynamic charac-
teristics of heat exchangers with a single-phase heat carrier in the near-critical state [3, 4].. As a par-
ticular case (cp — =, pg =0, pg ~ 0.3), we obtain equations describing the process in heat exchangers with
a boiling heat carrier from (22), (13), and (14) if the boiling fluid is considered a homogeneous medium.

1557



Now, let us examine the simplified model. Let us assume the pipe wall to be absolutely heat con-
ductive, but there is a thermal resistance at its inner boundary which equals the actual plus the resistance
of heat conductivity, i.e., the wall has a constant temperature along the radius which equals some real
temperature at a definite distance [1]. Then the heat conduction equation @) with the boundary conditions
(5)-(7) is replaced in the system (1)-(7) by the heat balance equation
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where & is the pipe temperature averaged over the radius; 8, is the reduced coefficient of heat exchange
taking account of the thermal wall resistance and defined by the formula [1]
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Here o is the fraction of the resistance of heat conduction referred to the inner boundary.

Starting from the assumptions made, in place of ay and & in the energy equation (1) there now enter
B, and &, respectively, i.e.,
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and (2) and (3) remain as they are,

Going over to the deviations in (25) and (27), replacing the length coordinate by the enthalpy analo-
gously, and taking into account that the heat-exchange coefficient 8, is determined by the expression
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we obtain the energy equation
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The continuity and motion equations for the deviations retain their form, i.e., the processes are
described by the system (29), (13), and (14) with the boundary conditions (19) upon assuming constancy of
the wall temperature along the radius, Therefore, in order for the models with concentrated and distributed
wall temperature along the radius to be equivalent, it is necessary to select the heat-exchange coefficient
B, (which means o also) in such a way that (22) and (29) would turn out to be identical. Comparing the coef-
ficients of i, g, p, and q in these equations, we can arrive at the deduction that two equalities
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Fig. 1. Dependence of the fraction of heat conduction resistance referred to the inner pipe boundary on the
parameter y, = ryv w/a for different ratios ¢ =d;/d,.

Fig. 2. Coefficient to convert the perturbations by the external heat flux to an equivalent perturbation of
the internal heat source.

Fig. 3. Dependence of the gquantity o InZ for w = 0 on the ratio of the diameters ¢.

must be satisfied for the equations to be identical for internal heat liberation in the wall, where the former
is obtained from equalizing the coefficients for i, g, and p and the second from the condition of equality of
the coefficients for q. If the value
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is substituted into (30), then it will be
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Substituting w Ty in (31), we obtain an expression identical to (32). Therefore, if we determine
By from (32) take this value when using the heat balance equation, the result of computing the deviations
in the medium parameters will agree with the corresponding solution of the problem taking account of the
distributivity of the wall temperature along the radius. Solving this equation for »x we find
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Now, let us determine the fraction of the thermal resistance ¢ which must be referred to the inner
pipe boundary. Equating the value of » obtained from (26) to (33), we will have
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If the problem of determining 8,, in the case of heating a heat exchanger outside is examined, then
because the flux energy equation in this case is different from the corresponding equation for heating by an
inner source only by the presence of a term with a heat flux perturbation q, we can arrive at the deduction
that (34) remains valid for all perturbations (i, g, p). As regards the heat flux perturbations q, in this
case ¢ should differ from the values obtained in (34). For convenience in the computations, however, it is




convenient to retain the same value of Ty (and therefore, of o and B,) in the term q/ (1 + j“’TM”C*l) for
heating from outside as in the remaining terms.

Then to conserve the identity of the equations, the value of q must be multiplied by the ratio between
(23) and (24), i.e., by
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It follows from (34) and (35), that the quantities ¢ and £, are independent of Bi (i.e., the heat-ex-
change coefficient), and are determined only by two parameters ¢ =d;/d, and y, = ryv'w/a =V Pd. The
values of these quantities were computed on a digital computer in the ranges ¢ 1.2-2 and y, 0-10. The
results of the computation are presented in Figs. 1 and 2.

It is seen from Fig, 1 that, firstly, o is not a real quantity as is ordinarily assumed, but is com-
plex, which is associated with the finite rate of metal heating, secondly, this quantity is frequency de-
pendent. As it grows the absolute value of ¢ diminishes since only the metal layers closest to the inner
boundary hence succeed in being heated. The graphs in Figs, 1 and 2 afford the possibility of determining
the admissibility of using a model with wall temperature concentrated along the radius in every specific
case. Thus for heat exchangers with relatively small pipe diameters (the radiation surfaces of locomotive
boilers, ete.) the parameter y, varies approximately between 0 and 2 (if the cutoff frequency is assumed
Wmax ~ 0.2 sec™1) and ¢ between 1.2 and 1.6. As is seen from Figs. 1 and 2, within these limits 1, 2 and
o, £q can be assumed real, independent of the frequency, and equal to the values at w = 0. The quantity
0y =0 varies between 0.364 for £ =1.2 and 0.415 for ¢ =1.6,i.e., in this domain of values ¢ is close to
0.4, which agrees with the results obtained in MoTsKTI [5] and in TsNIIKA by the selection of steam heaters
in the computations.

The values of o, _¢ agree with the quantities computed by the formula recommended in (3]
1 Cz 1 gz
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However, it is more convenient to use the quantity ¢ In¢, whose values are represented in Fig. 3 (for
w =0) as.a function of the ratio between the diameters ¢ in computing the coefficient o In¢ by means of
(26). It is seen from the figure that this dependence is almost linear, hence, the formula
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can be recommended for practical computations in the domain ¢ =1-1.6 for y, between 0 and 2,

It should be noted that gq ~ 1 for y, = 0-2, i.e., the method of heating (internal heat liberation or
heating from outside) exerts practically no influence on o, hence (36) can be used in computing the dynamics
of atomic reactors as well as radiation heating surfaces of boilers with a boiling heat carrier in the case
of a strong dependence of the heat carrier properties on the temperature and pressure, or in case they are
constant,

As regards computations of the dynamic characteristics of pipelines of great length and large diam-
eters (0.1-0.2 m), then because the range of variation of y, is broadened to 0-20 in these cases, it is im-
possible to assume ¢ constant even for small ¢ (see Fig. 1), and either the model with wall temperature
distributed along the radius should be used in the computations, or a variable (frequency dependent) ¢ in
the form of a complex quantity should be given when using the concentrated model. This deduction is con-
firmed by computations performed in the TsNIIKA, which showed that the dynamic characteristics of pipe-
lines in boiler aggregates, computed by means of the concentrated and distributed models (the wall was
considered flat), diverge strongly.

NOTATION
Ty, Ty, T are the outer, inner, and running radius of the heat-exchanger pipe, respectively, m;
d;, dy are the outer and inner diameters, m;
l is the running coordinate of the heat-exchanger length, m;
t is the time, sec; ’
v is the specific volume of the heat carrier, m?/kg;
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is the enthalpy of the heat carrier, J/kg;
is the temperature of heat carrier, °C;
is the pressure of heat carrier, N/ m?;
is the mass-flow rate of the heat carrier, kg/m?- sec;
D is the specific heat of the heat carrier, J/kg - deg;
OPMs CM> MM are the density, specific heat, and heat conduction of the metal pipe, respectively, kg
/m3, J/ke.deg, J/m-deg. sec;
a = A/ PpCM is the temperature conduction of the metal, m?/ sec;
i) is the temperature of the pipe wall, °C;
z is the coefficient of hydraulic resistance;
v is the slope of the heat-exchanger pipe;
Qs, Q, are the heat flux referred to the outer and inner pipe wall, respectively, W/ m?;
Qin is the intensity of internal heat liberation at the wall, W/ m?;
Qg is the coefficient of heat exchange from the wall to the heat carrier, W/ m?- deg;
j=v-1 is the imaginary unit;
w is the circular frequency, sec—i.

Subscripts

0 denotes the static state;
H denotes the quantity at the initial section of the heat exchanger, i.e., fori = 0.
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